Luminescent lanthanide helicates self-assembled from ditopic ligands bearing phosphonic acid or phosphoester units.

نویسندگان

  • Anne-Sophie Chauvin
  • Steve Comby
  • Matthias Baud
  • Cyntia De Piano
  • Céline Duhot
  • Jean-Claude G Bünzli
چکیده

A series of hexadentate ditopic receptors incorporating benzimidazole moieties have been designed, which are fitted with phosphonic acid or phosphoethylester coordinating units. In addition, poly(oxyethylene) pendants have been introduced on the benzimidazole backbone of two ligands to increase water solubility. The ligands self-assemble with lanthanide ions under stoichiometric conditions, yielding triple-stranded homobimetallic helicates, as ascertained by mass spectrometry and UV-visible titrations. The helicates display large thermodynamic stability, for example, log beta(23) approximately 21-24 for all the Eu(III) complexes. Photophysical measurements reveal sensitization of the metal-centered luminescence in the europium and terbium complexes, which is modulated by the nature of the ligand. Hydration numbers determined by the lifetime method are essentially zero. The Eu((5)D(0)) lifetimes are long and reach values up to 3.2 ms, while quantum yields as high as 25% are obtained in water at pH 7.4. Back transfer limits the sensitization efficiency for Tb(III) luminescence, and both lifetimes and quantum yields are much smaller. The properties of the helicates are discussed with respect to those self-assembled from ligands bearing carboxylate coordinating units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes.

Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. In this paper, we expand our previous work which demonstrated that self-assembled dinuclear triple-stranded helicates [Ln2(L(C2X))3] behave as excellent cell and t...

متن کامل

Lanthanide directed self-assembly synthesis and photophysical evaluation of chiral Eu(III) luminescent "half-helicates".

The reaction between the asymmetrical pyridyl ligands 3 (R) and 4 (S) and Eu(III) in CH(3)CN give rise to the formation of lanthanide luminescent 'half-helicates' in 1 : 3 (Ln:ligand) stoichiometry; the formation of which was observed by monitoring the changes in the ground and the excited state properties of the ligands, and in the time-resolved Eu-centred and the CPL emission.

متن کامل

Lighting up cells with lanthanide self-assembled helicates.

Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthani...

متن کامل

A versatile ditopic ligand system for sensitizing the luminescence of bimetallic lanthanide bio-imaging probes.

The homoditopic ligand 6,6'-[methylenebis(1-methyl-1H-benzimidazole-5,2-diyl)]bis(4-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}pyridine-2-carboxylic acid) (H(2)L(C2)) has been tailored to self-assemble with lanthanide ions (Ln(III)), which results in the formation of neutral bimetallic helicates with the overall composition [Ln(2)(L(C2))(3)] and also provides a versatile platform for further derivati...

متن کامل

Discriminating between lanthanide ions: self-assembly of heterodimetallic triple-stranded helicates.

A bis-terdentate segmental ligand has been designed which self-assembles with lanthanide ions of different size to yield heterodimetallic triple-stranded helicates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 48 22  شماره 

صفحات  -

تاریخ انتشار 2009